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Abstract
In abstract algebra, a lattice is a well studied algebraic structure and it has various applications across different discipline of studies. In particular,
lattices are actively studied in cryptography due to the computational hardness of some lattice problems. In material science or computational
physics, a lattice model is a crystalline structure coinciding in special cases with the atom or molecule positions in a crystal. In this project, we
studied lattices as an algebraic structure and how it is connected to algebraic number theory.

Lattice and dual of a lattice
An n-dimensional lattice L is any subset of Rn that is both:

• an additive subgroup: 0 ∈ L and −x, x+ y ∈ L,∀ x,y ∈ L; and

• discrete: every x ∈ L has a neighbourhood in Rn in which x is
the only lattice point.

The dual of a lattice L, which is denoted by L∗ is the set of vectors in
Rn, such that

L∗ = {w ∈ Rn : 〈w,L〉 ⊆ Z}

Let B ∈Mn(R), where b1,b2, ...,bn are the column vectors of B rep-
resenting the n linearly independent basis vectors of L. We say B is a
basis of L. If dimB = n, L is a full rank lattice. In fact, the theorem
below shows the relation between the basis of a lattice and the basis
of its dual lattice.

Theorem 1. Let L be a full rank lattice. If B is a basis of L, then
(B−1)T is a basis of its dual lattice, L∗. [5]

With this theorem, we derive the following corollaries.

Corollary 1. Let L be a lattice, then (L∗)∗ = L.

Corollary 2. Given two lattices L andM, L ⊆M ⇐⇒ M∗ ⊆ L∗.

Corollary 3. Let q be a scalar, then (qL)∗ = 1
qL
∗.

q-ary finite dimensional lattices
q-ary finite dimensional lattices are being widely studied and applied
in cryptography. Here, we will study two common q-ary lattices. A
lattice L ⊂ Zm is a q-ary m-dimensional lattice if qZm ⊆ L ⊆ Zm.
Given a matrix A ∈ Zn×m

q , we consider the following two lattices [1]

Lq(A) = {y ∈ Zm : y = AT s mod q , s ∈ Zn},
L⊥q (A) = {y ∈ Zm : Ay = 0 mod q}.

It is straightforward to verify that both are indeed q-arym-dimensional
lattices. We have the following theorem which shows the dual relation-
ship between the two lattices above.

Theorem 2. L⊥q (A) = q (Lq(A))
∗
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Embeddings of a number field
There is a notion of embedding of an algebraic extension of Q into C
[4]. Let K be a number field of degree n. An embedding is a map that
maps K to C. By the Primitive Element Theorem, K/Q is a simple
extension and let K = Q(α). There exists f(X) ∈ Q[X] with degree
n, such that f(X) is the minimal polynomial of α. Every element of
K can be written as

c0 + c1α+ ...+ cn−1α
n−1, for ci ∈ Q.

f(X) is irreducible over Q. By the Fundamental Theorem of Algebra,
f(X) has n distinct roots in C.
Let ρ1, ρ2, ..., ρn be the n distinct roots of f(X). We have

f(X) =

n∏
i=1

(X − ρi), for ρi ∈ C.

We have n embeddings in total. For j = 1, 2, . . . , n, we define σj to be
an embedding that maps K to C by the following way:

σj(c0 + c1α+ ...+ cn−1α
n−1) = c0 + c1ρj + ...+ cn−1ρ

n−1
j .

Suppose there are 2s complex roots and r real roots, i.e. n = r+2s, we
relabel the n embeddings as σ1, σ2, ..., σr, σr+1, σr+1, ..., σr+s, σr+s.

Embeddings of an ideal in OK
In this section, OK is the ring of integers of a number field K. Let K
be a number field of degree n, OK has a Z-basis, say {x1, x2, . . . , xn}.
Also, let σ1, σ2, . . . , σn be the n distinct embeddings that maps K to
C. We have the discriminant [2]

4K = D(x1, . . . , xn) = det(σi(xj))
2

By Dedekind’s theorem of linear independence of characters, we can
show that 4K 6= 0.

Proposition 1. [3] Let K be a number field of degree n. Let a be
a nonzero ideal in OK , then σi(a) for i = 1, 2, . . . , n is a full lattice,
where σi’s are the embeddings that map K to C.

The steps leading to prove this proposition are as follows:

• Prove that a has a Z-basis of n elements, say {x1, x2, . . . , xn}.

• Let A ∈ Mn(R) with its ith row being the n embeddings of xi,
namely σ1, σ2, ..., σr, σr+1, σr+1, ..., σr+s, σr+s, where n = r+ 2s.

• We know detA 6= 0, by performing elementary column opera-
tions, we can successively prove the proposition.
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